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Dynamics of the Generalized Glauber-Ising Chain 
in a Magnetic Field 
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A one-dimensional kinetic Ising model with nearest neighbor interaction J 
and magnetic field H/> 0 is treated in both linear and nonlinear response, 
using the most general single spin-flip transition probabilities that depend 
on nearest neighbor states only. The dynamics is reformulated in terms of 
kinetic equations for the concentration n~+(t) [n~-(t)] of clusters containing 
l up- [or down-] spins, which is exact in the homogeneous case. The initial 
relaxation time ~-* of the magnetization is obtained rigorously for arbitrary 
J, H, and temperature T. The relaxation function is found by numerical 
integration for J/T ~< 2. It is shown that "coagulation" of minus-clusters 
becomes negligible for both J/T and HIT large, and the resulting set of 
equations is solved exactly in terms of an eigenvalue problem. A perturba- 
tion theory is developed to take into account the neglected coagulation 
terms. The relaxation function is found to be non-Lorentzian in general, 
in contrast to the Glaubi~r results at H = 0, which are recovered as a 
special case. In addition, nonlinear and linear relaxation functions differ 
for H ~ 0. Consequences for the application to biopolyrners are briefly 
mentioned. 

KEY WORDS: Ising model; master equation ; clusters; nonlinear response; 
relaxation functions; biopolymers. 

1. I N T R O D U C T I O N  

In  the stochastic Ising models ~1-16) Ising spins on a lattice are in contact  

with a heat ba th  which induces r a n d o m  flips of the spins from one state to 
another.  This rather simple model  for the irreversible statistical mechanics 
of a cooperative system has found  much interest, because: (i) it can be 
solved exactly for the case of zero magnet ic  field and a certain choice of 
t ransi t ion probabi l i ty  W on a one-dimensional  lattice, ~1,3-5) and  both  
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Fig.  1. E a c h  s t a t e  o f  an  I s i n g  c h a i n  is c h a r a c t e r i z e d  by  a c e r t a i n  s e q u e n c e  o f  c lus t er s  

{l, ~}. 

linear (1,~) and nonlinear (5) response functions have been obtained; (ii) a 
variety of approximate techniques can be worked out for these models and 
thus tested (e.g., the dynamic mean-field (2'8) and Bethe approximations (~) or 
other decouplings of the equations of motion of correlation functions, (1~ 
"cluster-dynamics" approaches, (a,l~ Monte Carlo calculations, (~a) high- 
temperature series expansions, (15,~6~ etc.); (iii) the model can be used to 
approximate the kinetics of anisotropic magnets, (12,~a) alloys undergoing 
order-disorder transitions, (~7,za~ and structural transitions(~O); (iv) finally, 
the one-dimensional version can be used to approximately describe (l~ 
the kinetics of helix-coil transitions(2~ in biopolymers. 

Now, unfortunately, for this last application the exactly solved case is 
not sufficient since one would require both more general transition prob- 
abilities and nonzero field. (~~ The validity of approximations (2'3,9-~1~ 
is uncertain and even doubtful because of the fact that mean-field-like 
factorization approximations are known to become worse, the lower is the 
dimensionality of the system. (22~ Exact results of Hilhorst (a)'2 also concern 
a too restricted choice of transition probability. In the present paper we 
develop an approach (2a~,a by which the relaxation can be treated for arbitrary 
values of the parameters and general transition probabilities. As in Refs. 
6 and 8, it is based on the use of the concentrations n, * of "clusters" of l up 
(a = I) or down (,~ = - 1 )  spins in thermal equilibrium (Fig. 1) obtained 
exactly by Felderhof. (25~ In Section 2, we reformulate the master equation 
in terms of time-dependent concentrations of these clusters nJ(t). In Sec- 
tion 3 the initial relaxation time T* commonly used in biochemical work ~~ 
is obtained rigorously. Section 4 discusses numerical solutions of our set 
of kinetic equations, while in Section 5 an approximation is treated where 
(for HIT > 1) coagulation of clusters of up-spins is neglected. The resulting 
relaxation functions can be obtained analytically. A perturbation theory is 
developed by which the neglected terms can be taken into account, and 
first-order corrections are obtained again analytically. In Section 6 we 
briefly discuss the relevance of our results to biopolymers, but defer a more 
detailed comparison of our results with experiments and with previous 
approximations (x~ to a separate publication. (26~ 

2 An algebraic error  in Ref. 8 is pointed out  in Section 5. 
3 Some of  our  results are reported briefly in Ref. 24. 
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2. K I N E T I C  IS ING M O D E L  A N D  CLUSTER D Y N A M I C S  

The single spin-flip kinetic Ising model is defined in terms o fa  Markovian 
master equation for the probability distribution P(/~I .... ,/z~, t) for the spins 
{/x~ = + 1}, (12) 

N 

d P(/%...,/x~r t) = - ~,, W(/zj-+ -/c)P(/xl,...,/%...,/xzr t) 
i = 1  

N 

+ ~ W(--I~i-+lxj)P(l~z .... ,--ixj,...,ix~, t)  (1) 
j = l  

where the transition probabilities W satisfy the detailed balance condition 
with the equilibrium distribution P0(/xl,...,/~r 

W(/C -+ -~j)Po(/~l .... ,/~j .... ,/~N) = W(-/~j  -+/~0Po(/x~,...,~j,...,/xN) (2) 

and are otherwise arbitrary. Po can be expressed in terms of the Hamiltonian 
as Po = ( I /Z)exp(-Zgf /T) ,  where kB = 1, Z is the partition function, 

and 

N N 

= - ( J / 2 )  + - H (3) 
t = 1  i = l  

and we make the system translationally invariant (disregarding end effects 
in the chain) by the periodicity condition 

/~r + 1 = t~l, /Zo =/~N, N -+ oo (4) 

The transition probability describes the random flipping of the spins induced 
by the heat bath. Physically, it seems reasonable to assume that the coupling 
that produces these flips is a local interaction, and thus the flip rate W 
should not depend on the global state of the system but only on the local 
environment of the considered spin. Since derivations of the master equation 
(1) from more microscopic considerations are available only for rather 
special cases, (27-29) we tentatively assume that W depends on the state of the 
nearest neighbors only. Since right and left neighbors are equivalent, there 
exist then only six different rates Wo +, W0-, W_ +, W_- ,  W+ +, and W+- 
(cf. Fig. 2), of which only three are independent because of Eq. (2), which 
gives 

Wo + / Wo - = e -  ZH/r, 

W _  + / W _  - = e -(4++2m/T, (5) 

W + + / W + -  = e + ( 4 J - 2 H ) / T  
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w:= t o t -  t )T 
w-. tot --" t| 

w:, 1| Fig. 2. Transition probabilities w that describe the flip- 
ping of the encircled spin. 

Wo + (Wo-) is the probability that an up-spin (down-spin) at the end of an 
/-cluster (l > 2) is flipped per unit time, W_ + (W_ -) is the probability that 
a (1, - )-cluster  is created [destroyed], and W+ + (W+-)  is the probability 
that a (1, +)-cluster is created (destroyed). 

The standard Glauber model <1) is a special case of Eq. (5), with 

W0 + = [1 - t a n h ( H / T ) ] / 2 ~  

[ W_ + = 1 - t a n h  ~ 2r~,  (6) 

i.e., instead of three independent rate factors W0 § W_ +, and IV§ +, one 
has only one rate factor ~-2~ 1. 

Now we make use of the fact that each state of the Ising chain is uniquely 
specified in terms of the sequence of clusters {(l, cO}. Consider, e.g., a part 
of the sequence (l', - ) ,  (l, +) ,  (l", - ) .  The contribution of the spins in the 
/-cluster to the energy of the system does not depend on the magnitude of 
l '  and l" (by definition a cluster of up-spins must have neighboring clusters 
of down-spins of some size). Therefore it is clear that in thermal equilibrium 
on the average there is no correlation between the lengths of neighboring 
clusters in the chain, i.e., in a translationally invariant system the prob- 
ability that an (l", -)-cluster  follows an (l, +)-cluster is equal to its relative 
probability f F ,  where 

fg. = n~,/n, n - -  s n~ + = s nz- (7) 
l=i /=i 

Suppose now we consider nonequilibrium relaxation processes where 
the system is kept in thermal equilibrium (characterized by Ho, To) for times 
t < O, while at t = 0 the external conditions are changed such that a new 
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equilibrium (characterized by H, T) has to be established. Clearly, the 
dynamics defined by Eqs. (1)-(5) should not create any correlations in the 
lengths of neighboring clusters, i.e., the probability that an (l", -)-cluster 
follows an (l, +)-cluster is still given by its relative probabilityf~=(t), which 
now depends on time: 

fg(t) = n[,(t)/n(t), n(t) = ~ n,+(t) = ~ n~-(t) (8) 
/ = 1  / = 1  

Thus the microscopic information contained in the specific cluster sequence 
is unnecessary for our purposes, and it suffices to describe the system by the 
set {nz+(t), n~-(t)} (which we abbreviate by {n}) at each time t. Equation (1) 
can then be replaced by the "coarse-grained"<6~ master equation valid for a 
large but finite chain: 

d 
d-t P({n}, t) = - ~  W({n} --+ {n'})P({n}, t) 

.{n'} 

+ ~ W({n'} .-~ {n})P({n'}, t) (9) 
{n'} 

The price which is paid for this coarse-graining is that it is approximate if 
the initial state contains correlations in the lengths of neighboring clusters; 
but we think it is still exact for .the description of the relaxation from one 
spatially uniform state to another. However, in the following we will not be 
concerned with the solution of the full Eq. (9), but only its first moment: 

N - Z  

d nz+(t) = 2 ~ [Wo-f~+l(t)n{-l(t) - Wo+f2-(t)n~+(t)]z>~2 dt 
2 = 1  

N-l-1 

+ 2 ~ [Wo+f~-(t)n{+l(t) - Wo-fs 
k = l  

N - l - 1  

+ 2 ~. [W_+n++2+l(t) - W_-f2+(t)A-(t)nz+(t)]z>~l 
2 = 1  

l - 2  

+ ~ [W_-A+(t)A-(t)nz52_l(t)- W_+n +~t~l l \ ) J / ~ > 3  
2 = 1  

N - 2  N - m - 1  

+ ~ ~ [W+ nm+~+~(t)- W++f~-(t)nl+(t)fm-(t)]z=l 
m=l 2=1 

(lO) 

The equation for n~-(t) follows from Eq. (10) by changing the signs of all 
superscripts +,  - (and also the signs of the subscripts in the W's). Equation 
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(10) can be understood immediately from Fig. 2 by systematically enumerat- 
ing all possibilities; the factor 2 in the first three lines accounts for the fact 
that reactions occurring at the end of a cluster can occur on both ends of it. 
The index on the brackets [...] shows for which cluster sizes the corresponding 
contribution has to be taken into account. In thermal equilibrium each 
bracket [...] vanishes individually because of detailed balance. In fact, the 
resulting equations can be used to construct the thermal equilibrium values 
for the nil, which agree with those found by Felderhof, ~25~ 

nfl = n q~- 1 

exp(~H/T)  
q~ = cosh(H/T)  + [sinh2(H/T) + e x p ( - 4 J / T ) ]  112 

(11) 

Note that seo = (1 - q~)-i is the average length of the a-clusters (for H = 0, 
~:+ = ~:_ = ~: is simply the correlation length). 

Eq. (10) is the first central result of our paper, on which all subsequent 
discussion is based. In a previous work Felderhof (6~ gave a general expression 
but did not explicitly give the proper summation limits nor did he include the 
last line of Eq. (10). Hilhorst 's work ~8~ was concerned with the special case 
W _ -  = W_ + = W+-  = W+ + = 0 only. Clearly, a complete solution of 
Eq. (10) is very difficult due to the nonlinear terms. 

In the following, it will be convenient to use a vector notation, 

]n~(t)) = (nil(t), nf(t), . . .}, ( l la)  = ~ laz (12) 
/ = 1  

for arbitrary functions az of the cluster length index l. Then Eq. (10) is more 
compactly rewritten as 

(d/dt) ln~ = - L ~ 1 7 6  (13) 

where the "Liouville opera tor"  L~ can be conveniently expressed in 
terms of its matrix elements, (23~ while the cluster density n(t) changes only 
due to the "nucleation ra te"  P(t) 

(d/dt)n(t) = P(t)n(t) ,  P(t) = t - ( t )  - P+(t)  (14) 

with 

P~ = ~rWJf~a(t) - ~rW~-~[f;~(t) - 2 + ( l l f - ~  (15) 

where I F ( t ) ) =  { f ~ ( t ) , f f ( t ) , . . . } .  The r~(t) describes the rate at which 
(1, a)-clusters are formed per unit time. 
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We now introduce the funct ion qbAAe(t) to describe the relaxation of  the 
quant i ty  A after a change Ae of  an external pa ramete r  e ( tempera ture  T, 
f ie ld/4,  etc.) <16,8~ 

~AAe(t) = [ (A( t ) )  -- (A(oo))] /[(A(O))  - (A(oe))]  (16) 

For  Ae --~ 0, Eq. (16) reduces to an ordinary  linear response-function,  which 
is related to dynamic  correlat ion functions via s tandard fluctuation-dissipa- 
t ion relations. (12) We use Eq. (16) since we wish to include explicitly the 
case of  highly nonlinear relaxation, where Ae is not  small (nonlinear relaxa- 
t ion is impor tan t  for the appl icat ion to biopolymers ,  where frequently 
" t empe ra tu r e  j u m p "  methods  are used(l~ The quantit ies A that  are of  
interest here are magnet izat ion/spin  

Qx(t))  = (I]n+(t))  - ( l l n - ( t ) )  = 1 - 2 ( l ]n - ( t ) )  (17) 

and internal energy/spin @(t)) ,  where one makes  use of  the fact that  the 
contr ibut ion of  an (l, e)-cluster to the total  energy is ez ~ = - (I - 2 )J  - trill, 
and hence. 

( 4 t ) )  = (~+]n+( t ) )  + ( ~ - I n - ( t ) )  = - J  + 4Jn(t) - H( l z ( t ) )  (18) 

In Eqs. (17) and (18) we have made  use of  the relation ( l ln+( t ) )  + ( l ]n - ( t ) )  
= 1, which expresses the fact that  each spin must  belong to some cluster. 
The order -parameter  relaxation t ime r and the associated initial relaxation 
time r* are then defined as 

f o  ( d ~ ( t )  ) - 1  (19) r = dt qb,~(t), ~'* = - ~ t=0 

I f  the relaxation is " m o n o d i s p e r s i v e "  and hence Lorentzian (i.e., ~2e(t) = 
e-t/T), ** = r, as occurs in the Glauber  model  for  H = 0. (I> In  the case of  
polydispersive relaxation, ~-*/7 =# 1, this rat io hence can be taken to measure  
the degree of  "po lyd ispers iveness"  (i.e., the extent to which a whole spectrum 
of  relaxation t imes contribute).  There has been some discussion in the 
li terature (1~ of  what  T*/~- is for  H # 0 and other choices of  t ransi t ion 
probabilit ies,  but  no completely  conclusive answers have been obtained.  
Clarification of  this quest ion is one of  the aims of  the present  paper.  

3. B E H A V I O R  OF THE IN IT IAL  R E L A X A T I O N  T I M E  x* 

From Eqs. (13), (16), (17), and (19) we immediate ly  obtain 

"r* 
2 

(t , (0))  - (~(oo)> ( l j L - ( 0 ) l n - ( 0 ) )  (20) 

Using for  the initial values In - (0 ) )  cluster concentrat ions appropr ia te  for  
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thermal equilibrium To, Ho [and hence Eq. (11)], it is possible to evaluate 
Eq. (20) exactly, both in the case of linear and nonlinear response. From 
Eqs. (10) and (13) one first obtains, suitably rearranging the sums, (23) 

1 
p(O) <llL-(O)[n-(O)> 

N N - - l - 1  

= 2 Y 2 (Wo +It+ - 1) 
l=l ~=1 

N-2 N-l-1 

+ ~ ~ (W-+fz++k+l- W_-fk+fl-fz +) 
/=I /C=1 

N-2 N-l-1 

+ 2 ~ l ~ (W+-f~+k+l -- W++f~-fl-fz-) (21) 
/=i /~=1 

where the fm~ refer to the initial thermal equilibrium at Ho, To. Information 
on the final equilibrium is contained in the W's. Using Eqs. (7) and (11) and 
evaluating the resulting geometrical series, one obtains (see Ref. 23 for 
details of the tedious but straightforward algebra) for N--~ oo 

1 2n(0) 
~.--~ = (tL(0) > _ (tz(~) > [2(Wo+q+ - Wo-q_) + P+(0) + F-(0)] (22) 

with 

F"(0) = ~WJ(1 - q,) - ,rW2~ - q_~) (23) 

and the q+, q_ refer to the initial thermal equilibrium. Exact expressions 
of r* for N finite are more complicated and can be found in Ref. 23. Making 
use of de l'Hospital's rule, Eq. (22) can be used also for the linear response. 
One obtains 

(_~1)nn = (2 -q +q ++ -q _q _ ) 2 [2Wo+q+ + W_-(1 - q_) + W++(1 - q+)] 

(24) 

Using the Glauber (1) choice of transition probabilities, Eq. (6), one finds 
from Eq. (11) for H = 0 that ~-*= ~-~o/[1 - tanh(2J /T)] ,  i.e., Glauber's 
result, (1) as expected. Furthermore, it follows from Eq. (24) that the con- 
tribution proportional to Wo + [i.e., the terms describing cluster growth and 
shrinking in Eq. (10)] is dominant at low temperatures, -r*lr~ ~ exp(4J/T)/2. 
The contribution of nucleation of (1,-)-clusters (proportional to W_-)  
as well as of (1, +)-clusters (proportional to W+ +) is negligible, i.e., one 
obtains corrections of order e-aJ/r. Hilhorst,(m who omitted the W_- and 
W+ + from the very beginning, obtained a different amplitude factor 
[~'*/~-~ = 3 exp(4J/T)/2] due to an algebraic error. <2a) 
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For nonzero fields the situation is different even if one chooses the 
Glauber transition probabilities: The contribution of growing and shrinking 
of clusters (Wo +) to the rate ( l / r*)  at low temperatures (T/J << 1) is negli- 
gible [i.e., ,-~ e x p ( -  2H/T)/r~] in comparison with the nucleation of (1, - ) -  
clusters (which gives a contribution ,,~l/r~), while the nucleation of 
(1, +)-clusters is of  order e x p [ - ( 4 J  + 2H)/T]/r~ for H < 2J  or 
exp(-4H/T)/ro~ for H > 2J. Hence the Hilhorst model (8~ does not con- 
stitute a reasonable approximation to the Glauber model except for 
HIT-+ O. This failure has a simple physical explanation: For H/T large, 
the magnetization is close to unity, and then the cluster density n(t) is very 
low, the chain contains only few (and small) (l, - ) -clusters  and at the same 
time few (but large) (l, +)-clusters. Since a growing-shrinking event can 
occur only at the two sites at the end of such an (l, +)-cluster, while nuclea- 
tion of (1, - )-clusters  can occur at any of the l - 2 sites in the interior of 
the cluster, it is clear that these nucleation events must be the dominating 
process. This observation of very different rates for the various processes 
will be the starting point of our perturbation method developed in Section 5. 

Figure 3 illustrates the behavior of r*/T~ as a function of H/T for 
larger values of T/J. While linear and nonlinear relaxation times agree for 
H = 0 (as expected from Refs. 1 and 5), this is no longer true for H r 0: 
As expected, the nonlinear relaxation is now quicker than the linear one. 
A similar difference also has been detected in other models. (~6,19,a2~ For  
HIT >> 1, r* approaches r | for all J/T, as expected since then the magnetiza- 
tion saturates and always the nucleation of (1, - )-clusters  and the reverse 
process become the dominant mechanism. Finally, we note that Eq. (24) 
has been obtained by a completely different method by Schwarz. (aa~ 

For the Glauber m choice of  transition probabilities the relaxation is 
Lorentzian for H =- 0 and hence it is reasonable to approximate it by a 
Lorentzian also for small but nonzero HIT, i.e., O~( t )  = e x p ( - t / r * ) ,  with 
T* given in Eq. (22) or (24). Our numerical treatment (Section 4) suggests 

Fig. 3. Initial relaxation time ~* of the Glauber model 
plotted vs. field at two temperatures for the cases of 
linear response (2xH--+0) and nonlinear response 
(AH/T = 5.0). 

10-~ 1_Q7 
" 

",4,\ "noo  
5 /1 

] J  q I I t  
o a2 0,4 H/T 0.6 
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that the same approximation is accurate also for T/J > 2 and arbitrary 
1t/7". Of course, for T/J >> 1 one does expect a Lorentzian relaxation even 
for arbitrary choices of the transition probabilities, since then the relaxation 
of the spins is not much affected by their interactions; one rather has a 
relaxation of independent spins, which is of  course exponential, as a treatment 
based directly on Eq. (1) shows. 

4. N U M E R I C A L  INTEGRATION OF THE EQUATIONS OF 
MOTION FOR THE CLUSTER CONCENTRATIONS 

In principle, it is a straightforward matter to integrate Eq. (10) numer- 
ically on a computer for not too large N, using the nl e of Eq. (11) for the 
appropriate To, H0 as starting values. However, there is little interest in the 
properties of kinetic Ising chains for finite N; in the case of periodic boun- 
dary conditions one is rather interested in N - +  oe. Equation (10) approxi- 
mates this case only if the nze(t) are negligibly small if l is of the order of N. 
A necessary condition is thus ~:+ << N, ~:_ << N for both the initial and the 
final states, or, more precisely [cf. Eq. (11)] 

[qe(t = 0)] ~ << 1, [qo(t = oo)] ~ << 1 (25) 

since then the cluster distributions of both the initial and the final states 
deviate negligibly from the distribution in the thermodynamic limit. Since 
the normalized cluster concentrations [nze(t) - n~e(oo)]/[n,e(O) - nf(oe)] can 
be shown (23~ to decay to zero monotonically, finite-size effects then are 
negligible throughout the relaxation process. 

From Eqs. (11) and (25) it follows that for J/T -- 1.5 and HIT = 0.085 
one needs already an N as large as 1000 (for higher temperatures and/or 
smaller fields smaller values of N are sufficient). Hence the practical diffi- 
culties are comparable to that of the "molecular  dynamics" method (see 
Adler (34~ for a review). Several integration routines have been tested. In our 
case the Adam extrapolation formula (3a~ 

23 d e 16 d 
nl~ + At) = nle(t) + At -f~ ~ nz (t) t 12 dt tile(t) 

C - A t  

5 d nle(t) t-2~J + T2 ~ (26) 

gave the most  satisfactory results. For instance, at J/T = 1.5 an integration 
interval At = OAr| was sufficient to keep the error of all nze(t) smaller than 
1~o. Figures 4-6 give some typical results for the case of the Glauber ~1~ 
transition probabilities, Eq. (6). Figure 4 collects some calculations in the 
high-temperature region (J/T < 0.5). At J/T = 0.1, linear (AT--+ 0) and 
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Fig. 4. Linear and nonlinear relaxation func- 
tions of the order parameter plotted vs. time 
after a jump AT of temperature for various 
temperatures and fields. 

4, H/T-0.5 H=0 1.04- ; linear&nonlinear 
(t)l ~---~,~: J/T-0.S 

I i  t 

,,1 
J/" \ X  ~'"~.i r-nonlinear 

H/T- 1.0 . . . .  N \  H-O "~ 
n? ~ n l i n e e r  X Nklin, ear&nonlinea' 
~" (ATT- 4IS) X~X~ 

0.1 I : ', r 
0 t0 20 3.0 tr[= 

nonlinear relaxation functions coincide with each other both for zero field 
(in which case the results agree precisely .with those of Glauber) and for 
nonzero field, and are simple Lorentzians within our accuracy. The same is 
true for J/T = 0.5 in zero field, while there a slightly different result is 
obtained for nonzero field: In the nonlinear case the order parameter relaxes 
slightly quicker than in the linear case, which is still Lorentzian. The asymp- 
totic relaxation time (i.e., the slope of the relaxation function in the semilog 
plot, Fig. 4, for t --+ oo) is the same, of  course, as in the linear case, and thus 
the relaxation function is slightly non-Lorentzian. Figures 5 and 6 show that 
these deviations from Lorentzian behavior become more pronounced at 
low temperatures, and now show up in the linear relaxation function as well, 
if HIT differs from zero appreciably. Then also the difference between the 
linear and nonlinear case is rather pronounced. For zero field, however, the 
results always agree precisely with that of Glauber, (1> and hence yield 
coincidence of linear and nonlinear functions and Lorentzian relaxation. 

1,0: 

Q5 

Q2 

Fig. 5. Semilog plot of linear and nonlinear relaxation 0.1 
functions at J/T = 1.0 and two values of the field. 0 

\,~ li,~,r~.~ 

(&T/T = 4/5~ ~ "  

Q2 Q4 06 
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1,01 
s 

(15- 

H=O ~ inear 

H /T  - 0.085 

0'2 L1- ]/T o 1.5 

0.1 ~ 20 801 t/%I~ Fig. 6. Semilog plot of relaxation functions at J/T = 1.5 
and two values of the field. 

A comparison of the time scales of Figs. 4-6 also reveals the "critical 
slowing down" of the relaxation as J/T becomes large. Since s r (or ~+) 
becomes large at the same time, it would be hard to proceed to substantially 
lower temperatures than those shown. The temperature range shown does 
comprise, however, the temperatures that are of interest for applications 
to biopolymers. ~~176 In this case the Glauber transition probabilities 
are perhaps not appropriate. But calculations similar to those shown in 
Figs. 4-6 but with other choices of the W's are in principle straightforward 
by our method (some examples can be found in Ref. 26). 

5. PERTURBATION METHOD FOR THE RELAXATION IN 
STATES CLOSE TO THE FULLY ORDERED STATE 

5.1. The Zeroth Approximation 

I f  the magnetization of the system is close to unity, the configurations 
of the system contain large {l, +}-clusters but only rather small {l, - } -  
clusters: hence the nucleation rate of {1, +}-clusters (which can take place 
at the interior sites of the {l, -}-clusters only) is negligibly small in com- 
parison with the nucleation rate of {1, -}-clusters (Section 3). This fact 
suggests that we use a "zeroth approximation" where nucleation of {1, +}- 
clusters is neglected. We start from Eqs. (13) and (14), which are rewritten 
in matrix notation (l, k = 1 ..... N) 

d 
d-t [f~(t)) = -{L~ + 8z~P(t)}]f(t)) 

(27) 

L~ = {L~s(t) + L ~ ( t )  + a~z181kP~176 

where the matrix L~(t) describes the growing and shrinking of clus- 
ters, L~(t)  describes nucleation of (1,-a)-clusters ,  and the matrix 
[aSzl~lkI'~(t)/fl~ (with only one nonzero matrix element) describes 
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nucleation of  (1, a)-clusters. F rom Eq. (10) the elements of  the matrices 
Lg~(t) and L 2 ~ ( t )  can also be found explicitly (see Ref. 23). In zeroth 
approximat ion we now write, instead of  Eqs. (14) and (27), 

where 

d 
lf~(t))o = -{Lo"  + PoSz~}lff(t))o 

dt  
(28a) 

no(O) = n(O), .o(OO) = n(oo),  

L f  = Lgs(oo) - S,~8~kFo, Po = P-(O){n(O)/[n(oo)  -- n(0)]} 

( 2 8 c )  

The constant  C in Eq. (28b) is determined such that  the following boundary  
conditions are satisfied: 

dH~ dH~ t = 
- - )7  t=o  = r - ( 0 ) n ( 0 ) ,  - 8 7  ~ = 0 

(29) 

Then Eq. (28a) satisfies the boundary  conditions ]ff(0))o = ] i f (0 ) )  and 
]ff(oO))o [f~ The matrix L ~ = gs can be diagonalized (see the appendix),  

L f l t F " ( x ) )  = A~(x)J~F*(x)), Lo~ ~ = A f l ~ ~  (30a) 

with the lowest eigenvalue Ao ~ = 0 and the spectrum 

AS(x) = Fo + 2 W f ( 1  + qo - 2 ~ / ~  cos x) = Po + A~ (30b) 

The coordinates ~f l (x)  = (l]tF*(x)) of  the right eigenvectors are 

W~o -- [q{~- lf~(0o)11/2 
(31) 

Wfl(x) = 2[q~ -1Wf/A~ - cos x) sin l x  + sin x cos Ix] 

while the coordinates (tF~]l) = qh ~ of  the left eigenvectors (W ~1 are 

~~ = [q2 (t - 1~/a(oo)]1/2 

W,~(x) = 2[qy"- 'Wo~/X~(x)pl=[(~/~ - cos x) sin l x  + sin x cos lx] 

These eigenvectors are o r thonormal  

( T ' ~ ( x ) l ' e ~ ( x ' ) )  = 8 ( x  - x ' ) ,  

(32) 

( ' I ' o f l ' V ~ ( x ) )  = o ,  (~Fo~t'Fo ~) = 1 
(33) 

d no(t)  = - Fono(t) + C (28b) 
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and satisfy a closure relation 

1%~><%~ + (1/~) dxl~=(x)><'VO(x)l = 1 (34) 

Hence the solution of Eq. (28a) is found as 

I f f ( t ) > o  = { ' F o ~ > ( % ~ l f f ( 0 ) >  + (1/~,) dx 

x {exp[- A~(x)t]}lW~(x)><~F~176 (35) 

where the first (time-independent) term on the right-hand side represents 
If~ This zero eigenvalue A f =  0 is a consequence of the detailed 
balance condition, (Lo s + I'o)[ff(oo)> = 0. 

From Eqs. (16) and (17) we then find in linear response in this 
approximation 

(I){.~ = 2 l i m  ( l l n - ( o o ) >  - (lln-(t)> 
~H~o ( ~ ( 0 ) >  - <~(~)> 

= 2 lim ( l { f - ( ~ ) > n ( ~ )  - ( l { f - ( t )>n( t )  (36) 
~,,-o (~(o)> - <~(oo)> 

which gives 

(o, 1 (n(0~ - q(OO) exp(_ Fot ) (1)..(t) = - 2  lim 
~ / ~ o  ( ~ ( o ) >  <~(oo)> 

+ n(oo) dx {exp[- A-(x)t]} 

• (I1~ - (x)>CF - (x) l f  - (0)>) (37) 

One then finds (for details of the algebra see Ref. 23) 

(ll~F-(x)> = - 4 [ W o -  /A-(x)]8/2"r s in  x (38a) 

lim ( tF-(x) / f - (O)> = 4[Wo-/A-(x)]  8/~ 
A H~ 0 

• [(1 - q_)/v/~t_] sin x lim [q_ - q_(O)] 
A H ~ O  

(38b) 
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where q~ refers to the final thermal  equil ibrium (at t = m).  One then finds 

e_Vo~( q+ - q_ (2 - q+ - q_)(1 - q_)2 qb~(t) \ ( 1 - q - _ ) - ~ + - + q _ ) + q -  q+ + q_ 

2 f  ~ dx  sin 2 x 

x ~r J 0  (1 - q_ --- 2~/q_ cos x) 3 

x e x p [ - 2 W o - t ( 1  + q_ - 2~v/q_ cos x ) ] )  (39) 

For  t--+ ov the factor  e-Vo t with Fo = W_ -(2  - q+ - q_)2(1 - q_)/(q+ - q_)  

dominates ,  while for  finite t a whole spect rum of  relaxation times contributes.  
F r o m  Eq. (9), both  ...-(~ and  '..-*(~ can be found analytically, t ransforming 

the x-integrat ion into contour  integrals in the complex plane. (23) The result 
is(23) 

1 _ (2 -- q+ -- q _ ) 2 ( 2 W o + q  + 1 - q_ 
_,(o~ ~+ 7q_ q_- \ 2 - q+ - q_ + W - - ( 1 - q - ) q +  

(40) 

and 

~_(~ _ 1 ( q +  _ q _ ) 2  

W _ -  (1 - q_)2(2 - q+ - q_)2(q+ + q=) 

1 r _ ( 2  - q +  - q _ ) ( 1  - q_r_) ( 4 1 )  
+ 2Wo-  (,1 - q_)(q+ + q_)(1 - r_)  3 

where 

r~ = 1(1 + qr + I 'o /4W f - {[�89 + q.) + P o / 4 W f ]  2 - qo}1/2 (42) 

For  H/T>> 1 we have f rom Eq. (11) that  q+ ~ 1, q_ ~ 0, and then the exact 
equat ions (24) and (40) give essentially the same result. In  this limit, one 
obtains r_ -+  0 and hence 

1/z.* = W _ -  + 2Wo +, _....1/-(~ = W _ -  (43) 

�9 ~ _(o) ~ i.e,, again a Lorentzian which gives in the Glauber  case r . .  "u, ~-~, 
relaxation. Eq. (43) demonst ra tes  tha t  the relaxation will in general be 
non-Lorentzian,  however.  

5.2. F i rs t  A p p r o x i m a t i o n  

In  order  to take into account  the terms neglected in replacing Eq. (27) 
by Eq. (28), we introduce an evolut ion opera to r  U~(t) by 

I F ( t ) )  = e x p [ - ( L o  ~ + Po3~)t] U ~ ( t ) I F ( 0 ) )  (44) 
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Writing 

r~(t) = p ( t )  - P o ,  Lfl( t )  = L*(t) - Lo *, r~( t ' )  = p ~ ( t ) ~ , ~  

(45) 

we find from Eqs. (27), (44), and (45) that  

fo U~ -= 1 - dl' {exp[(Lo ~ + Fo3~)t']} 

x [Ll~(t ') + r l ( t ' ) ] {exp [ - (Lo  ~ + roS~)t ']}U~(t) (46) 

and hence 

fj I F ( t ) )  = ]F( t ) )o  - dt' {exp[-(Lo ~ + F 0 ~ ) ( t  - t')]} 

• [Ll~(t ') + r~(t')]lF(t')) (47) 

Our treatment is analogous to t ime-dependent perturbation theory in quantum 
mechanics. Since Lz~(t ') and rz( t ' )  depend on the elements of  lf~ 
Eq. (47) is highly nonlinear. Nevertheless, one can introduce the usual 
first-order approximations, replacing the (l]f~ by (l]F(t'))o everywhere 
on the right-hand side of Eq. (47). This yields 

[ fa( t ) ) l  = IF ( t ) )o  -- fdt' { e x p [ - ( L f  + Po3z~)(t t')]} 

x [L~(o~(t') + Pl(o~(t')3z~]lf~ (48) 

One can then show quite generally (2a) that  in this approximation the initial 
relaxation time r* is still treated rigorously. The total relaxation time z (~ ~zzt 
can also be obtained explicitly, although the calculation is extremely 
tedious. (23~ We only quote the result~2a~: 

~c1~ 2 - q + - q -  1 ( I ,~ = q+ + q-  (2Wo_)2 W_-  (1 - q+)3 q+q_2 r+'----~-2 ws~t'+ _ j+) 

r_ 2 r 2 (2 - q+ - q_)2 (1 -- q_)a S~  
- ( 1  - q _ ) ~ J ~  + q+ _ q-  

q_)2r_2(ds + (2 - q+q+- ~--q-)2(1 - q_))  (1 

(1 - q+)a(1 - q_)J~(J~ - d~)]  
r+r_ 
q+q- J 

f 2 r_2  _ + W+ + (1 - q + ) ( 1  - q _ )  ~ ( J ~ z - S s  
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+ (1 - q+)2 r+2q+ J+ (1 I q_ q_2 22 + _ q_)2(1 _ q§247 

r _  2 

x J d ( J A  - J ~ )  + (1 - q_)3(1 - q+)~_3 

q_2 

[ l - q _ ( 1  q + ) 2 j ~ j ~ ] )  (49) § 2Wo- r_(1 - q_)2 j~  _ r_r+ - -  - 
q- 

where  J~m stands for the following integral: 

2 U sin 2 x 
J~% = g j dx (]  + q~ _ 2 v ; ~  cos  x)"[1 + (ro2/~/~) cos  x] ~ 

(50) 

These integrals can be reduced by a recursion method (23) to the integrals 
J~o and J l l ,  which can be calculated by contour integration/23~ The integrals 
needed for the explicit evaluation of Eq. (49) are listed in Appendix B. We 
note that Eq. (49) now explicitly depends on all three rate factors Wo-, 
W_- and W+ + It has been shown (23~ that _<1)_+ _(o~ as H / T - +  0% i.e., 
the correction terms taken into account by the "first approximation" are 
then negligible. This fact again justifies our whole perturbation scheme. A 
discussion of the numerical consequences of Eq. (49) in some cases of interest 
is given in Ref. 26. 

Figure 7 shows the regions where @) >/ 0.99 and (/x) /> 0.95 in the 
plane of parameter values H/J, T/J. For 2 H I T  > 1 the above approximations 
should be reasonable. Crosses denote the parameter values where "exact"  
numerical solutions of Eq. (10) have been obtained (Section 4). It is clearly 

Fig. 7. Temperature-field plane showing the 
regions of parameter values for which (/z) ex- 
ceeds 0.95 or 0.99, respectively. In the regime 
2HIT >> 1 our first (or zeroth) approximation 
should be accurate. Crosses denote cases for 
which Eq. (10) was solved numerically. 

HI:I, 
~0- 

50- 

~.0- 

3O- 

2.0- 

1.0- 

0 

i .  
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seen that these two methods have an appreciable region of overlap. Thus, 
there is no need to consider higher order terms .(n~ in the perturbation ~,lL/t 

expansion. 

6. C O N C L U S I O N S  

We summarize the main results of this investigation as follows: 
(i) The relaxation of the generalized Glauber-Ising chain from one 

homogeneous state to another can be described rigorously by a set of coupled 
nonlinear equations [Eq. (10)] for the cluster concentrations nl(t). This 
description holds for arbitrary values of the energy parameters H/J, T/J, 
and for arbitrary values of the kinetic parameters W0+, W_ +, and W+ + 
of our nearest neighbor single spin-flip model. As an input, we use the 
rigorous results of Felderhof on the static cluster concentration in thermal 
equilibrium. 

(ii) The initial relaxation time r* has been obtained exactly both in 
linear and nonlinear response [Eqs. (22)-(24)]. Since we show that at T/J > 2 
a Lorentzian relaxation is appropriate for arbitrary fields, the relaxation 
function can be approximated by ~,Ae(t) = e x p ( -  t/r*). The same approxima- 
tion also holds in the case of the Glauber kinetic parameters [Eq. (6)] in 
the regime of both T/J and HIT small. For HIT large, on the other hand, 
r* is shown to approach the single spin-flip time r~o irrespective of  the value 
of T/J. We also show that the r* in the linear case is usually larger than that 
of the nonlinear case, except for HIT = 0 where both cases coincide. 

(iii) It is shown that the infinite hierarchy, Eq. (10), can be truncated 
with negligible error if N >> ~:+, ~:-, i.e., at a truncation length much larger 
than the average length of clusters of up- (or down-) spins. This decoupling, 
hence, is well controlled, in contrast to previous work, where equations of 
motion for correlation functions were decoupled in a mean-field-like fashion. 
This truncated set has then been integrated numerically by computer for 
T/J > 0.5. We find that for T/J < 1 and nonzero H/Tpronounced deviations 
from Lorentzian relaxation occur, even if one chooses the Glauber transition 
probabilities. For other choices of transition probabilities, some deviations 
occur even for H = 0. Thus the relaxation of the order parameter is in general 
polydispersive. 

(iv) A perturbation treatment is presented which gives good results if 
the magnetization is close to its saturation value. In this regime, nucleation 
of (1, +)-clusters is shown to be rather unimportant. Neglecting it com- 
pletely yields the "zeroth approximation," for which the Liouville operator 
can be explicitly diagonalized. From the resulting eigenfunction expansion, 
explicit expressions for the relaxation functions and the various relaxation 
times have been obtained. Then a time-dependent perturbation method is 
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developed by which the neglected nucleation terms can be taken into account,  
and explicit expressions for  the various relaxation times are derived in first 
order. There the initial relaxation time is already recovered exactly. 

A P P E N D I X  A. S O L U T I O N  OF THE JACOBI  E I G E N V A L U E  
P R O B L E M ,  EQ. (30)  

The matrix Lo ~ [Eq. (28c)] can be related to the well-known Jacobi 
oscillation matrices. (a6,aT~ This is seen by not ing that Lgs(oo) has the structure 
(for N finite) 

L ; , ( o o )  = 

C 1 

- -  C 1 

0 

0 

0 

0 

\ 

0 0 0 0 ... 0 ~ C ~  

c - c 2  0 0 0 ... 0 

- c l  c - c 2  0 0 ... 0 

0 - c ~  c - c 2  0 ... 0 

�9 . .  0 - - C  1 C - - C  2 
J 

�9 .. 0 0 - c~ c2 ] 

where we have introduced the abbreviations 

cl  = 2 Wo~ c2 = 2 Wo ~ 

(A1) 

c = cl + c2 (A2) 

We may symmetrize Lgs(m) or the matrix J"  = Lgs(oo) - PoSa31~ + PoS.,k 
by an or thogonal  t ransformation,  

J J  = OJ~O-1 ,  

to obtain 

/ 

Js ~ = 

(O),k = 8z~q(~ z-z~/2 (A3) 

cl  - (c lc2)  ~/2 0 0 0 ... 

- ( c ~ c 2 )  ~12 el  + c2 + Po - ( c ~ c 2 )  ~/2 0 0 ... 

0 - ( c ~ c 2 )  11~ c~ + c 2  + Po - ( c l c 2 )  ~12 0 ... 

0 . . . .  (c lc2)  112 el  + c2 + I'o 

0 ... 0 - ( c l c 2 )  112 

0 

0 

0 

-(c~c~) ~ 

c2 + I'o ] 

(A4) 

This matrix has rank N - 1, and hence one eigenvalue A 1 = 0 occurs. The 
associate eigenvector (~F1) will be determined later. First we note that  the 
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eigenvalue equa t ion  J.IReT) = ATIReT) yields a recurs ion re la t ion for  the 
coord ina tes  Re,,T: 

(clc2)l/2Rez-l,T + (AT -- cl -- c2 -- ro)Re,,T + (clc2)ll2Re,+l,p = 0 (A5) 

toge ther  with two b o u n d a r y  condi t ions  

(AT - cl)Relp + (ClC2)I~2Re2T = 0 
(A6) 

(AT - C~)ReNT + (ClC2)I/2ReN-~,T = 0 

Put t ing  cos 0 T ---- (c~ + c2 + Fo - AT)/2(ClC2) */2, one finds that  Eq. (A5) is 
solved by 

Ret,p = A T sin lOp + B T cos lop (A7) 

where Eqs. (A6) yield two homogeneous  equat ions  for  the ampl i tude  factors  
AT, BT. Non t r iv i a l  so lu t ions  are ob ta ined  for  

(clc2)*/2AT sin NO T = 0, i.e., 0 T = (rr/N)(p + n) (A8) 

where n is some integer,  which we de te rmine  f rom the re la t ion  Sp Js = ~v= 2 A, 
which gives n = Nu - 1, v = 0, 1 ... . .  We  choose  v = 0 (o ther  values o f  v 
would  only mean  a re label ing o f  the eigenvalue spec t rum but  would  no t  

p roduce  any  physical  changes),  and  hence we find the eigenvalues 

A T = c~ + c2 + F0 - 2(clc2) ~/2 cos [ (~ /N) (p  - 1)] (A9) 

The  coefficients Ap and  B T o f  the e igenfunct ions  ]ReT) then fol low f rom 

b o u n d a r y  condi t ions  (A6) toge ther  wi th  the normal i za t ion  condi t ion  
<RedReT,> = Re'TRe'T' =  TT': 

\NAT]  [_\c=] -- cos 0 T , B T = \NAT ] sin 0 T (A10) 

Hence we ob ta in  (l = 1 ..... N ; p  = 2, . . . ,N) 

Re,T \-~---~} {[(C~/C2) ~I= -- COS 0T] sin lOT + sin 0 T cos lOT} (A11) 

The  coord ina tes  o f  [Rez) fol low f rom the closure re la t ion E~=,  IRep)(Rer[ = 1, 
or, equivalent ly ,  3u, = ~ =  1 Re,~Re,,p, to be 

Re,, = {(1 - c,/cz)/[1 - (Cl/C=)N]}*/=(Cl/C=) ~'-1~/=, l = 1 ..... N 

(A12) 

In  the t h e r m o d y n a m i c  l imit  N- -+oo  the var iable  0 T = (= /N) (p  - 1) with 
p = 2, 3 ..... N is rep laced  by  the cont inuous  var iable  x, with 0 ~< x ~< rr, 
and  hence one ob ta ins  Eqs. (30) and  (31). 
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A P P E N D I X  B. 

J&= 

TABLE OF INTEGRALS J,,m N E E D E D  FOR 
THE E V A L U A T I O N  OF EQ. (49)  

(1 - q o ) - z ( 1  - r~)  - 2  

q~(1 + r~)(1 - r~)-3(1 - qo)-~(qo - ro2) -~ 

(11 1 +  r~] 1 + q ~  + 

2(1 - qo)2(l - r . )  2 - qo 1 - ro] 

qo[(1 - qor.)(q.  - r .  2) - ro(1 + ro)(1 - q.)2] 

(1 - ro)4(1 - q~)3(qo _ ro2)(qo _ ro) 
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